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ABSTRACT
Thin film coatings have been essential in development of
several micro and nano-scale devices. To realize thin film
coatings various deposition techniques are employed, each
yielding surface morphologies with different characteristics
of interest. Therefore, understanding and control of the sur-
face growth is of great interest. In this paper, we devise
a novel network-based modeling of the growth dynamics of
such thin films and nanostructures. We specifically map dy-
namic steps taking place during the growth to components
(e.g., nodes, links) of a corresponding network. We present
initial results showing that this network-based modeling ap-
proach to the growth dynamics can simplify our understand-
ing of the fundamental physical dynamics such as shadowing
and re-emission effects.

Categories and Subject Descriptors
H.1 [Models and Principles]: Miscellaneous; I.6 [Simulation
and Modeling]: Model Development; C.2.1 [Computer-
Communication Networks]: Network Architecture and
Design—network topology, network communications

1. INTRODUCTION
Thin film coatings have been the essential components

of various devices in industries including microelectronics,
optoelectronics, detectors, sensors, micro-electro-mechanical
systems (MEMS), and more recently nano-electro-mechanical
systems (NEMS). These coatings have thicknesses typically
in the nano- to micro-scales and are grown using vacuum de-
position techniques [2]. Thin film surface morphology con-
trols many important physical and chemical properties of
the films. It is therefore of great interest to understand and
control the development of the surface morphology during
thin film growth.

Commonly employed deposition techniques are thermal
evaporation, sputter deposition, chemical vapor deposition
(CVD), and oblique angle deposition. Different than oth-
ers, oblique angle deposition technique [7] is typically used
for the growth of nanostructured arrays of rods and springs
through a physical self-assembly process. In many applica-
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tions, it is often desired to have atomically flat thin film
surfaces. However, in almost all of the deposition tech-
niques mentioned above, the surface morphology generates
a growth front roughness. The formation of growth front is
a complex phenomenon and very often occurs far from equi-
librium. When atoms are deposited on a surface, atoms do
not arrive at the surface at the same time uniformly across
the surface. This random fluctuation, or noise, which is in-
herent in the process, may create the surface roughness. The
noise competes with surface smoothening processes, such as
surface diffusion (hopping), to form a rough morphology if
the experiment is performed at either a sufficiently low tem-
perature or a high growth rate.

A conventional statistical mechanics treatment cannot be
used to describe this complex phenomenon. About two
decades ago, a dynamic scaling approach [6, 5] was pro
posed to describe the morphological evolution of a growth
front. Since then, numerous modeling and experimental
works have been reported based on this dynamic scaling
analysis [2]. On the other hand, there has been a significant
discrepancy among the predictions of these growth models
and the experimental results published [9]. Briefly, theoret-
ical predictions of growth models in dynamic scaling the-
ory basically fall into two categories. One involves various
surface smoothing effects, such as surface diffusion. The
other category involves the shadowing effect (which origi-
nates from the preferential deposition of obliquely incident
atoms on higher surface points and always occurs in sputter-
ing and CVD) during growth. However, experimentally re-
ported values of growth exponent (which measures how fast
the root-mean-square roughness of the surface evolves as a
function of time according to a power-law relation) are far
from agreement with the predictions of these growth models.
Especially, sputtering and CVD techniques are observed to
produce morphologies ranging from very small to very large
growth exponent values.

Understanding the thin film and nanostructure growth
dynamics under the above-mentioned deposition techniques
has been of high importance. There have been several stud-
ies revealing fundamental dynamic effects (e.g., shadowing,
re-emission, surface-diffusion, and noise effects) taking place
during the growth process. Studies towards explaining the
growth dynamics have been partly successful and only the
simulation-based studies were able to include all these ef-
fects. In this paper, we devise a novel network-based mod-
eling approach to better understand the growth dynamics.
We define a concise mapping between a network and the ba-
sic physical operations taking place in the growth process.



Figure 1: Surface of a growing thin film (growth
front) under shadowing and re-emission effects.

We, then, develop qualitative and quantitative understand-
ing of the growth dynamics by studying the corresponding
network model. We present our initial results based on pre-
viously recorded simulations of the growth process.

The rest of the paper is organized as follows: We start
with covering the thin film and nanostructure growth pro-
cess and the basic physical effects involved in Section 2. We
then survey the applications of dynamic network models on
various areas in Section 3. Section 4 describes the details of
our methodology of mapping growth dynamics to a network.
We present initial results of our network-based modeling ap-
proach in Section 5, and conclude in Section 6.

2. BASICS OF THIN FILM AND NANOS-
TRUCTURE GROWTH

Only recently, it has been recognized that in order to
better explain the dynamics of surface growth one should
take into account the effects of both “shadowing” and “re-
emission” processes [8]. As illustrated in Figure 1, particles
can approach the surface at oblique angles and be captured
by higher surface points (hills) due to the shadowing effect.
This leads to the formation of rougher surfaces with colum-
nar structures that can also be engineered to form “nanos-
tructures” under extreme shadowing conditions, as in the
case of oblique angle deposition that can produce arrays of
nanorods and nanosprings [7]. In addition, depending on
the detailed deposition process, particles can either stick to
or bounce off from their impact points, which is determined
by a sticking probability, also named “sticking coefficient”
(s). Non-sticking particles are re-emitted and can arrive at
other surface points including shadowed valleys. In other
words, re-emission has a smoothening effect while shadow-
ing tries to roughen the surface. Both the shadowing and
re-emission effects have been proven to be dominant over the
surface diffusion and noise, and act as the main drivers of the
dynamical surface growth front [7]. The prevailing effects of
shadowing and re-emission rely on their “non-local” char-
acter: The growth of a given surface point depends on the
heights of near and far-away surface locations due to shad-
owing and existence of re-emitted particles that can travel
over long distances.

Due to the complexity of the shadowing and re-emission
effects, no growth model has been developed yet within the
framework of dynamical scaling theory that take into both
these effects and still that can be analytically solved to pre-
dict the morphological evolution of thin film or nanostruc-
ture deposition. A dynamic growth equation that was pro-
posed by Drotar et al. [4] and developed for plasma and re-
active ion etching processes (where in etching surface atoms
are removed instead of being incorporated to the surface
as in the case of deposition) that take into the re-emission

and shadowing effects could only be solved numerically for
a limited case of re-emission and shadowing scenarios. Only
recently, shadowing and re-emission effects could be fully
incorporated into the Monte Carlo lattice simulation ap-
proaches [9, 8, 4].

In brief, conventional growth models, which do not include
re-emission effects, in dynamic scaling theory can not ex-
plain most of the experimental results reported for dynamic
thin film growth. On the other hand, simulation techniques
that include re-emission effects along with other important
processes such as shadowing, surface diffusion, and noise can
successively predict the experimental results but can not al-
ways be easily implemented by a widespread of researchers.

3. DYNAMIC NETWORK MODELS
The study of complex networks pervades various areas

of science ranging from sociology to statistical physics [3].
A network in terms of modeling can be defined as a set
nodes with links connecting them. Examples of real life
complex networks include the Internet, the World Wide
Web, metabolic networks, transportation networks, social
networks, etc. Recent works, motivated by a large num-
ber of natural and artificial systems, such as the ones listed
above, have turned the focus onto processes on networks,
where the interaction and dynamics between the nodes are
facilitated by a complex network. Here, our aim is to con-
struct the network from the apparent dynamics. These sys-
tems also typically constitute large scale elements unlike the
atomic processes involved during thin film or nanostructure
growth.

By using network-based modeling, fundamental under-
standing of many natural and artificial systems has been
attained. In complex networks research, two major types
of network models are used for various applications: Small-
world [10] and scale-free (power-law) [1] networks. Watts
and Strogatz, inspired by a sociological experiment, have
proposed a network model known as the small-world (SW)
network, which means that, despite their often large size,
there is a relatively short path between any two nodes in
most networks with some degree of randomness. The SW
network was originally constructed as a model to interpolate
between regular lattices and completely random networks.
Systems and models (with well known behaviors on regu-
lar lattices) have been studied on SW networks, such as the
Ising model, phase ordering, the Edwards-Wilkinson model,
diffusion, and resistor networks.

The other major type of network is based on an observa-
tion made in the context of real networks such as the Inter-
net, World Wide Web, scientific collaboration network, and
e-mail network. The common characteristic among these
networks is that they all exhibit power-law degree (connec-
tivity) distributions. These networks are commonly known
as power-law or scale-free networks [1] since their degree
distributions are free of scale (i.e., not a function of the
number of nodes N) and follow power-law distributions over
many orders of magnitude. This phenomenon has been rep-
resented by the probability of having nodes with k degrees
as P (k) ∼ k−γ where γ is usually between 2 and 3. The
origin of the scale-free behavior can be traced back to two
mechanisms that are present in many systems, and have a
strong impact on the final topology. First, networks are de-
veloped by the addition of new nodes that are connected to
those already present in the system. This mechanism signi-
fies continuous expansion in real networks. Second, there is



Figure 2: Identification of network “nodes” in a grid
network model corresponding to a landscape of a
growing thin film.

Figure 3: Grid network model development in space:
Consider two, red and green, particles falling on a
growing thin film sample. The red particle makes
four re-emissions while the green one makes three
re-emissions. We model each re-emission as a “link”
between the nodes corresponding to the starting and
ending points of the re-emission.

a higher probability that a new node is linked to a node that
already has a large number of connections. With appropri-
ate mapping to a network model, both of these mechanisms
can be qualitatively shown in thin film and nanostructure
growth dynamics. If we consider the thin film surface as
a set of nodes and re-emissions as the links between them,
the first mechanism refers to the understanding that each
particle gets “connected” to the grid network by falling on
to the film surface. Similarly, the second mechanism refers
to that a falling particle will more likely to land on a large-
size node thereby contributing to the scale-free topological
behavior of the growth dynamics.

4. MAPPING GROWTH DYNAMICS TO A
NETWORK MODEL

Interestingly, non-local interactions among the surface points
of a growing thin film that originate from shadowing and re-
emission effects can lead to non-random preferred trajecto-
ries of atoms/molecules before they finally stick and get de-
posited. For example, during re-emission, the path between
two surface points where a particle bounces off from the first
and head on to the second can define a “network link” be-
tween the two points. If the sticking coefficient is small, then
the particle can go through multiple re-emissions that form
links among many more other surface points. In addition,
due to the shadowing effect, higher surface points act as the
locations of first-capture and centers for re-emitting the par-
ticles to other places. In this manner, hills on a growing film
resembles to the network “nodes” of heavy traffic, where the
traffic is composed by the amount of re-emitted particles.

Several issues need to be considered in making a useful
and appropriate mapping between the growth dynamics of
thin films and nanostructures to a network modeling frame-
work. Let us consider a snapshot of a growing thin film’s
landscape. In Figure 2(a), let us say that blue color shows
currently elevated (i.e. hills) regions of the film and yel-
low color shows currently not elevated (i.e. valleys) regions

Figure 4: Some basic processes in the simulation:
(1) A particle is sent towards surface with angles θ

and φ based on an angular distribution chosen based
on the deposition technique. This particle sticks to
the surface with probability s0. (2) If it does not
stick, then it is re-emitted after which it may find
another surface feature and stick there with proba-
bility s1. This re-emission process continues like this
for higher-order particles, too. (3) An adatom can
diffuse on the surface. (4) Some surface points are
shadowed from the incident and re-emission fluxes of
particles due to the nearby higher surface features.

of the film. The first mapping issue is to define a “node”
in the corresponding network model. That is, what should
be the boundary of the corresponding network node on the
thin film surface? Intuitively, each blue or yellow region in
Figure 2(a) should ideally get mapped to a network node.
However, this depends on the resolution of the grid being
used for developing a network model. If the grid resolution
is too fine, then a blue/yellow region of the film can corre-
spond to multiple nodes as in Figure 2(b). Conversely, if the
grid resolution is too coarse, then multiple blue/yellow re-
gions can correspond to one network node as in Figure 2(c).
Having finer grid is more likely to capture dynamics of the
growth; therefore, we will develop our network models in as
fine granularity as possible. For a fine granularity network
model, it is always possible to aggregate the data pertaining
to neighboring nodes and observe the behavior at coarser
granularity. This is illustrated in Figure 3, where the grid
network model can be developed at various scales in space.

After fixing the placement of nodes on the thin film, we
then map growth dynamics to components of the corre-
sponding grid network model as shown in Figure 3. In gen-
eral, we argue that we can make an analogy that hills and
valleys are nodes of the network system, but hills act as
distributing centers, and valleys as gathering centers due to
the shadowing and re-emission effects, respectively. The re-
emissions of particles can, then, be modeled as a “link” from
the re-emission’s starting node to the re-emission’s ending
node. The time it takes for the particle to reach to its new
point can be considered as the link’s “propagation delay”,
which implicitly expresses the distance between the starting
and the ending nodes of the re-emission. It is even possi-
ble to consider the link’s “capacity” as the highest possible
number of particles that can simultaneously travel from the
starting and the ending nodes of the re-emission, which is
limited by the physical space corresponding to the link and
average size of the re-emitting particles.

Since it is not possible to experimentally track the tra-



Figure 5: Top view images of simulated thin film
surfaces grown under shadowing, re-emission, and
noise effects for sticking coefficients (a) s = 0.9 and
(b) s = 0.1. Corresponding projected trajectories of
the re-emitted particles are also mapped on the top
view morphologies for (c) s = 0.9 and (d) s = 0.1.

jectories of re-emitted and deposited atoms during dynamic
thin film growth, we will use Monte Carlo simulation ap-
proaches instead that were already shown to efficiently mimic
the experimental processes and correctly predict the dy-
namic growth morphology. In these simulations, each in-
cident particle (e.g., atom or molecule) is represented with
the dimension of one lattice point. A specific angular distri-
bution for the incident flux of particles is chosen depending
on the deposition technique being simulated. At each sim-
ulation step, a particle is sent toward a randomly chosen
lattice point on the substrate surface. Depending on the
value of sticking coefficient s, the particle can bounce off
and re-emit to other surface points. At each impact stick-
ing coefficient can have different values represented as sn,
where n is the order of re-emission (n = 0 being for the
first impact)1. In all the emission and re-emission processes
shadowing effect is included, where the particle’s trajectory
can be cut-off by long surface features on its way to other
surface points. After the incident particle is deposited onto
the surface, it becomes a so called “adatom”. Adatoms can
hop on the surface according to some rules of energy, which
is a process mimicking the surface diffusion. This simula-
tion steps are repeated for other particles being sent onto
the surface. Figure 4 illustrates the basic growth processes
included in a typical Monte Carlo simulation approach.

5. INITIAL RESULTS
In order to explore existence of such a network behavior

during thin film and columnar nanostructure growth, we de-
veloped 3D Monte Carlo simulations that take into shadow-
ing, re-emission, surface diffusion, and noise effects. These
effects simulate the evolution of surface topography and also
the simulation environment allows us to record the trajec-
tories of re-emitted atoms. As an example, Figure 5 shows

1In this paper we assume a constant sticking coefficient for
all subsequent re-emissions.

Figure 6: First row: Top view images from the sim-
ulated thin film surfaces for a CVD growth with
s = 0.9 at different film thicknesses d. Bottom
row: Corresponding projected trajectories of the
re-emitted particles qualitatively show the dynamic
change in the network topography.

the snapshot top view images of two surfaces simulated for a
CVD type of deposition, at two different sticking coefficients.
Figure 5 also displays their corresponding particle trajecto-
ries projected on the lateral plane. Qualitative network be-
havior can easily be realized in these simulated morphologies
as the trajectories of re-emitted atoms “link” various surface
points. It can also be seen that larger sticking coefficients
(Figure 5(a) and Figure 5(c)) leads to fewer but longer range
re-emissions, which are mainly among the peaks of colum-
nar structures. Therefore, these higher surface points act
as the “nodes” of the system. This is due to the shadow-
ing effect where initial particles preferentially head on hills.
They also have less chance to arrive down to valleys because
of the high sticking probabilities (see also particle A illus-
trated in Figure 1). On the other hand, at lower sticking
coefficients (Figure 5(b) and Figure 5(d)), particles now go
through multiple re-emissions and can link many more sur-
face points including the valleys that normally shadowed by
higher surface points (e.g. particle B in Figure 1).

Another interesting observation revealed in our Monte
Carlo simulations was the dynamic change of network behav-
ior on the trajectories of re-emitted particles. Figure 6 shows
top view images and their corresponding particle trajecto-
ries obtained from the simulations for a sticking coefficient
of s = 0.9, but this time at different film thicknesses that
is proportional to the growth time. The dynamic change
in the network topography can be clearly seen: at initial
times, when the hills are smaller and more closely spaced,
the re-emitted particles travel from one hill to another one
or to a valley. However, as the film gets thicker, and some
hills become higher than the others and get more separated,
particles travel longer ranges typically among these grow-
ing hills. The shorter hills that get shadowed become the
valleys of the system. It is expected that this dynamic be-
havior should be strongly dependent on the values of sticking
coefficients and angular distribution of the incident flux of
particles, which determine the strength of re-emission and
shadowing effects, respectively. In other words, each de-
position technique and material system can have different
dynamic network behavior that can lead to various kinds of
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Figure 7: Behavior of degree and distance distributions for network models of a CVD thin film growth.

network systems.
To make some initial observations on the network charac-

teristics based on our network-based models of the growth
dynamics, we plotted the degree and distance distributions
in Figure 7 for a thin film of size 512 × 512 lattice units.
We used each lattice unit on the thin film as a node in the
corresponding network model and each re-emission as a di-
rected/undirected link between the nodes of the surface loca-
tions. We developed the network models for snapshots of the
growth where each snapshot being composed of 10×512×512
particles’ trajectories. We took four snapshots at different
film thickness d. Since the complete growth process is very
long this many particles, in some sense, samples the surface
morphology. We did this network modeling for two different
thin film growths, one with sticking coefficient s = 0.1 and
the other with s = 0.9.

In this manner, Figure 7(a) and (b) shows the degree
distribution for the network models of the snapshots when
the links are undirected and directed respectively. Over-
all, the degree distributions exhibit an exponential behav-
ior while becoming power-law as time progresses during the
growth. This means that the interrelationship of the surface
points become more dominant and some nodes (i.e., colum-
nar structures) on the surface become the main hubs. The
degree distributions are quite well characterized even though
the growth dynamics are very chaotic. Another interesting
observation is that, as time progresses, the degree distribu-
tion for the case with high s converges to the one with low
s, which is a non-intuitive result.

Figure 7(c) shows the relationship between the indegree
and outdegree by plotting the average outdegree of nodes
with a particular indegree value. From this graph also, it
seems that the degree distributions converge to a common
behavior as time progresses even though sticking coefficients
are quire different. Similarly, Figure 7(d) shows the distance
distribution of the links in the network, which clearly ex-
hibits a power-law structure. The network model, again,
clearly captures the behavior and shows that a higher stick-
ing coefficient yields larger average distance with a pseudo-
power-law structure.

6. CONCLUSIONS
Our initial results on the observation of dynamic network

behavior in simulated CVD thin films are very promising
and indicate that a novel network modeling approach can be
developed for various deposition systems. We showed that
particles with non-unity sticking probabilities that are re-
emitted and deposited to other parts of the surface can form
a network structure constructed by the links among each im-
pact point, which defines nodes of the network. In addition,
due to the shadowing effect where obliquely incident parti-
cles hit preferentially to the higher surface points, hills of the

morphology act as the hubs of the network where most of the
particles are re-emitted from these regions. Columnar mor-
phologies formed under high sticking coefficients promote
the creation of long-distance network links mainly among
the hills, while smoother morphologies of smaller sticking co-
efficient depositions leads to the formation of shorter range
but well-connected links all over the surface points also in-
cluding valleys. Therefore, this dynamic network behavior
during thin film growth strongly depends on the sticking
probabilities, presence of obliquely incident particles, and
time-dependent morphology of the growing thin film, which
leads to the realization of a rich dynamic network system.
We believe that this work can lead to an unprecedented un-
derstanding of thin film and nanostructure growth, which
has been long sought by the researchers. However, in order
to fully develop our network concept as a viable modeling
approach, more in-depth investigations are necessary.
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